Extracellular signal-regulated kinase 2 (ERK2) knockdown mice show deficits in long-term memory; ERK2 has a specific function in learning and memory.

نویسندگان

  • Yasushi Satoh
  • Shogo Endo
  • Toshio Ikeda
  • Kazuyuki Yamada
  • Masataka Ito
  • Masahiko Kuroki
  • Takeshi Hiramoto
  • Osamu Imamura
  • Yasushi Kobayashi
  • Yasuhiro Watanabe
  • Shigeyoshi Itohara
  • Kunio Takishima
چکیده

The extracellular signal-regulated kinase (ERK) 1 and 2 are important signaling components implicated in learning and memory. These isoforms display a high degree of sequence homology and share a similar substrate profile. However, recent findings suggest that these isoforms may have distinct roles: whereas ERK1 seems to be not so important for associative learning, ERK2 might be critically involved in learning and memory. Thus, the individual role of ERK2 has received considerable attention, although it is yet to be understood. Here, we have generated a series of mice in which ERK2 expression decreased in an allele dose-dependent manner. Null ERK2 knock-out mice were embryonic lethal, and the heterozygous mice were anatomically impaired. To gain a better understanding of the influence of ERK2 on learning and memory, we also generated knockdown mice in which ERK2 expression was partially (20-40%) reduced. These mutant mice were viable and fertile with normal appearance. The mutant mice showed a deficit in long-term memory in classical fear conditioning, whereas short-term memory was normal. The mice also showed learning deficit in the water maze and the eight-arm radial maze. The ERK1 expression level of the knockdown mice was comparable with the wild-type control. Together, our results indicate a noncompensable role of ERK2-dependent signal transduction in learning and memory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mice lacking the ERK1 isoform of MAP kinase are unimpaired in emotional learning.

The extracellular signal-regulated kinases (ERKs) are members of the mitogen-activated protein kinase (MAPK) superfamily of enzymes and have recently garnered considerable attention in the field of learning and memory. ERK activation has been shown to be required for the induction of long-term potentiation (LTP) in the rat hippocampus and for the formation of associative and spatial memories in...

متن کامل

Cyclic changes in estradiol regulate synaptic plasticity through the MAP kinase pathway.

Hippocampal synaptic structure and function exhibit marked variations during the estrus cycle of female rats. Estradiol activates the mitogen-activated protein (MAP) kinase pathway in numerous cell types, and MAP kinase has been shown to play a critical role in the mechanisms underlying synaptic plasticity. Here, we report that endogenous estrogen produces a tonic phosphorylation/activation of ...

متن کامل

Beta-adrenergic receptor activation rescues theta frequency stimulation-induced LTP deficits in mice expressing C-terminally truncated NMDA receptor GluN2A subunits.

Through protein interactions mediated by their cytoplasmic C termini the GluN2A and GluN2B subunits of NMDA receptors (NMDARs) have a key role in the formation of NMDAR signaling complexes at excitatory synapses. Although these signaling complexes are thought to have a crucial role in NMDAR-dependent forms of synaptic plasticity such as long-term potentiation (LTP), the role of the C terminus o...

متن کامل

P11: The Effect of Flavonoids in Memory

Flavonoids may exert particularly powerful actions on mammalian cognition and may reverse age-related declines in memory and learning. Flavonoids can be modulated neuronal function and there by influencing memory, learning and cognitive function. Dietary supplementation with flavonoid-rich foods, such as blueberry, green tea and Ginkgo biloba lead to significant reversals of age-related deficit...

متن کامل

Knockout of ERK1 MAP Kinase Enhances Synaptic Plasticity in the Striatum and Facilitates Striatal-Mediated Learning and Memory

Extracellular signal-regulated kinases (ERK1 and 2) are synaptic signaling components necessary for several forms of learning. In mice lacking ERK1, we observe a dramatic enhancement of striatum-dependent long-term memory, which correlates with a facilitation of long-term potentiation in the nucleus accumbens. At the cellular level, we find that ablation of ERK1 results in a stimulus-dependent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 40  شماره 

صفحات  -

تاریخ انتشار 2007